Human Rhinovirus 16 Causes Golgi Apparatus Fragmentation without Blocking Protein Secretion
نویسندگان
چکیده
The replication of picornaviruses has been described to cause fragmentation of the Golgi apparatus that blocks the secretory pathway. The inhibition of major histocompatibility complex class I upregulation and cytokine, chemokine and interferon secretion may have important implications for host defense. Previous studies have shown that disruption of the secretory pathway can be replicated by expression of individual nonstructural proteins; however the situation with different serotypes of human rhinovirus (HRV) is unclear. The expression of 3A protein from HRV14 or HRV2 did not cause Golgi apparatus disruption or a block in secretion, whereas other studies showed that infection of cells with HRV1A did cause Golgi apparatus disruption which was replicated by the expression of 3A. HRV16 is the serotype most widely used in clinical HRV challenge studies; consequently, to address the issue of Golgi apparatus disruption for HRV16, we have systematically and quantitatively examined the effect of HRV16 on both Golgi apparatus fragmentation and protein secretion in HeLa cells. First, we expressed each individual nonstructural protein and examined their cellular localization and their disruption of endoplasmic reticulum and Golgi apparatus architecture. We quantified their effects on the secretory pathway by measuring secretion of the reporter protein Gaussia luciferase. Finally, we examined the same outcomes following infection of cells with live virus. We demonstrate that expression of HRV16 3A and 3AB and, to a lesser extent, 2B caused dispersal of the Golgi structure, and these three nonstructural proteins also inhibited protein secretion. The infection of cells with HRV16 also caused significant Golgi apparatus dispersal; however, this did not result in the inhibition of protein secretion. Importance: The ability of replicating picornaviruses to influence the function of the secretory pathway has important implications for host defense. However, there appear to be differences between different members of the family and inconsistent results when comparing infection with live virus to expression of individual nonstructural proteins. We demonstrate that individual nonstructural HRV16 proteins, when expressed in HeLa cells, can both fragment the Golgi apparatus and block secretion, whereas viral infection fragments the Golgi apparatus without blocking secretion. This has major implications for how we interpret mechanistic evidence derived from the expression of single viral proteins.
منابع مشابه
Tau secretion is correlated to an increase of Golgi dynamics
Tau protein can be released by neurons, an event linked to the propagation of Tau pathology in Alzheimer'disease (AD). Neuronal hyperexcitability was shown to significantly increase Tau release by neurons. We confirmed this in the present study. In a previous study, it was demonstrated that hyperexcitability induces Golgi apparatus dynamics resulting in its fragmentation. Our present results re...
متن کاملPoliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex.
Cells infected with poliovirus exhibit a rapid inhibition of protein secretion and disruption of the Golgi complex. Neither the precise step at which the virus inhibits protein secretion nor the fate of the Golgi complex during infection has been determined. We find that transport-vesicle exit from the endoplasmic reticulum (ER) and trafficking to the ER-Golgi intermediate compartment (ERGIC) a...
متن کاملAβ-induced Golgi fragmentation in Alzheimer's disease enhances Aβ production.
Golgi fragmentation occurs in neurons of patients with Alzheimer's disease (AD), but the underlying molecular mechanism causing the defects and the subsequent effects on disease development remain unknown. In this study, we examined the Golgi structure in APPswe/PS1E9 transgenic mouse and tissue culture models. Our results show that accumulation of amyloid beta peptides (Aβ) leads to Golgi frag...
متن کاملRegulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation.
We show that receptor induced G protein betagamma subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein gamma subunit and exhibit receptor-induced Golgi fragmentation. Receptor-induced Golgi fragmentation was inhibited by a shRNA...
متن کاملFragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis revealed by organelle-specific antibodies.
Many studies have established the central involvement of the Golgi apparatus in the transport and processing of plasma membrane, lysosomal, and secreted proteins. The Golgi apparatus of neurons is also involved in the axoplasmic flow of fast-moving macromolecules and in the orthograde, retrograde, and transsynaptic transport of exogenous ligands. Markers of the Golgi apparatus, based on traditi...
متن کامل